Focusing light in biological tissue through a multimode optical fiber: refractive index matching
نویسندگان
چکیده
منابع مشابه
Focusing and scanning light through a multimode optical fiber using digital phase conjugation.
We demonstrate for the first time to our knowledge a digital phase conjugation technique for generating a sharp focus point at the end of a multimode optical fiber. A sharp focus with a contrast of 1800 is experimentally obtained at the tip of a 105 μm core multimode fiber. Scanning of the focal point is also demonstrated by digital means. Effects from illumination and fiber bending are addressed.
متن کاملMultimode interference tapered fiber refractive index sensors.
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference am...
متن کاملReal-time resilient focusing through a bending multimode fiber.
Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imagin...
متن کاملMicrostructured optical fiber refractive index sensor.
We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show that selective filling of the microstructure with analyte can increase the device sensitivity by approximate...
متن کاملMultiwavelength optical fiber refractive index profiling
Fourier transform spectroscopy and interference microscopy are combined to provide the world's first multi-wavelength optical fiber refractive index profile (RIP) measurements. The RIP and its spectral dependence are obtained with submicron spatial resolution across an octave stretching from about 500 nm to the 1 micron operating band of Yb-doped fiber lasers and amplifiers. In contrast to comm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2019
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.44.002386